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Abstract

We quantify the impact of heat stress on the dairy industry throughout the Midwestern United
States in the years 2012-2016 using animal-level production data. When temperature and humidity
increase above critical levels, dairy cows become heat stressed and eat less which causes a drop in milk
production. We estimate a total of $60 million in lost profit over a five year period. These losses are
mostly due to moderate-intensity heat events, though we find the largest per-event losses following
high-intensity events. Losses are largest on small farms, while large farms appear to mitigate the
effects of low-intensity heat events. Crucially, certain types of dairy cattle are more susceptible than
others: dairy cows that have given birth multiple times and are early in their production cycle are
the most productive but also the most vulnerable to heat stress. We estimate that these cattle lose
about between 3-6% of their milk production in a heat wave as opposed to at most 2% for other
cattle. One low-cost form of adaption dairy farmers can use to mitigate these losses is changing the
time of year that cattle can give birth. Using a back of the envelope calculation, we estimate that
$21.54 million in lost profits could have been avoided in this period if all cows gave birth in the fall
instead of the spring.
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1 Introduction

The dairy industry faces an impending challenge: increasingly frequent extreme heat events due to

climate change (IPCC, 2022). Protecting livestock agriculture from the effects of climate change is a

policy priority given that it is a high-value sector and contributes 40% of agricultural production in high-

income countries and 20% in low-income countries (Food and Agriculture Organization of the United

Nations, 2021).

The dairy industry is especially vulnerable to heat events since cattle experience “heat stress” at high

levels of temperature and humidity. Heat stressed cattle eat less, which causes their milk productivity to

drop in an extreme heat event (Key et al., 2014; St-Pierre et al., 2003; West et al., 2003). Losses in dairy

production pose a threat to global food security, as dairy is a low-cost protein source for smallholder

farmers and low-income populations worldwide (Tricarico et al., 2020). Moreover, dairy products are an

important source of key nutrients (e.g., calcium, vitamins B12 and B5, and magnesium) for vulnerable

groups like pregnant women and children (Tricarico et al., 2020).

The impacts of heat stress on dairy industry production has either been quantified using state-level

data (Gisbert-Queral et al., 2021; St-Pierre et al., 2003) or using farm-level data from a limited number

of herds (Bohmanova et al., 2007; Key et al., 2014). These types of data have two shortcomings. First,

production data aggregated to the farm- or state-level hide an important determinant of heat stress: the

timing of each cow’s production cycle. Dairy cows will experience larger drops in milk production if

they give birth in the spring as opposed to the fall because their most vulnerable period, right after they

give birth, will coincide with the hottest part of the year. Dairy farms can decide to change when cows

give birth to mitigate heat stress, but this form of adaptation is not possible to detect when production

data is aggregated. A second shortcoming of previous studies is that production data are almost always

aggregated to the monthly or annual level. Without a daily measure of milk production, it is difficult to

understand the precise impacts of heat waves on milk production.

Our research fills these gaps by studying the short-run impacts of heat stress and how patterns in

calving dates mitigate the damages from heat stress. We pair panel data on cow-level milk production

collected every month for about 18,000 dairy farms throughout the Midwestern United States with daily

temperature and humidity data. We find total losses for herds in our sample over the period are equivalent

to 0.5% of the total dairy industry’s profits in each year. In total, we estimate that the herds in our

sample lost 975 million gallons of energy-adjusted milk and $60 million in profit over five years due to

heat stress. Dairy cattle experience heat stress at THI levels above 72 THI (Armstrong, 1994). We find

minimal losses due to low-stress events equivalent to 72 - 80 THI, despite evidence in the dairy science

literature that even low-stress events affect milk yield. This suggests that farmers have already adopted
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management methods to mitigate low-stress days.

Our novel data allows us to produce the first large-scale estimates of how the effects of heat stress

vary over a cow’s year-long production cycle. We find that heat stress vulnerability coincides with the

most productive phases in a cow’s lactation cycle, specifically cows that have given birth more than once

and have given birth in the past four months. These cows experience a 2% drop in milk production in low

stress, 4% drop on medium-stress days and a 6% drop under extreme stress conditions. In comparison,

cows giving birth for the first time or that are in the last 6 months of their cycle experience at most a

2% drop in milk production from a single extreme heat event. We conclude by estimating the impact of

a heat wave for each state individually and see evidence that states with more cows giving birth in the

spring see larger heat stress impacts.

Our results have significant implications for understanding the impact of heat stress and adaption

in the US dairy sector. First, the observed impacts of heat stress depend on where cows are in their

production cycle. Because cows are most productive and vulnerable to heat stress early in their cycle,

heat stress is less likely to appear significant in aggregated data if farms have already changed their

calving dates. This leads to a second implication: farms can mitigate the economic damage from heat

stress by simply changing the timing of their breeding decisions. Using our calculated heat stress impacts,

we estimate a counterfactual where all cows that were early in their cycle during the summer months

(May to August) were instead moved to a calving cycle that avoided these months (e.g., September or

October). We estimate that $22.69 million worth of lost profit, about 37% of the total damages, could

be avoided if older cows gave birth in the fall instead of the spring.

The paper proceeds as follows: section 2 gives background on the literature on heat stress. Section 3

describes our methods. Section 4 presents our results, and section 5 concludes.

2 Background

Heat stress impacts both the production ability and health of dairy cattle. At high levels of temperature

and humidity, cattle experience an increase in their body temperature which causes them to eat less

(West et al., 2003). The milk production ability of dairy cattle begins to decrease when the Temperature

Humidity Index (THI) goes above 72 (Bohmanova et al., 2007; West, 2003). Ravagnolo et al. (2000) finds

that, for each unit increase above 72, milk production drops about 1%. Heat stress also makes it more

difficult for cows to become pregnant (Jordan, 2003). Each additional day a cow is not able to become

pregnant costs the dairy operation $2.50 per cow due to lost production in the next production cycle

(St-Pierre et al., 2003). Finally, heat stress also weakens a dairy cow’s immune system and makes them
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more vulnerable to disease and early mortality (Bagath et al., 2019; Bishop-Williams et al., 2015).

Dairy producers have options to mitigate heat stress by changing day-to-day production practices,

investing in cooling systems, and changing the timing of breeding decisions. Within a cow’s production

cycle, farms can change the timing of feeding and rest to avoid additional movement or metabolic pro-

cessing at the warmest parts of the day. Farms can also make capital investments into shade, fans, and

sprinklers that cool cattle down during heat waves (Key et al., 2014; Armstrong, 1994). These capital

investments vary in their cost-effectiveness. Using a simulation model, St-Pierre et al. (2003) calculates

that optimum heat abatement could reduce heat stress costs from all livestock industries by about $700

million. However, Gunn et al. (2019) finds that heat abatement is only cost-effective in the most intense

heat waves. An arguably less-costly heat abatement strategy for some producers is to change the timing

of their management decisions. Skidmore (2022) finds that Brazilian cattle ranchers sell cattle early to

avoid having to raise cattle during the dry season. Even more relevant to the dairy industry is Ferreira

et al. (2016) which uses a simulation model to show that cows about to give birth are the most vulnerable

to heat stress. This suggests that changing the timing of when cows give birth is another way for dairy

farms to mitigate heat stress.

A number of studies have attempted to quantify the impacts of heat stress on the dairy industry using

small-sample on-farm data or aggregated, state-level data. Mukherjee et al. (2013), Qi et al. (2015), and

Key et al. (2014) use stochastic frontier analysis to examine the impact of THI on the efficiency frontier

of dairy farms throughout the country. In 100 farms in Florida and Georgia, higher THI was associated

with less efficiency and investments in cooling systems were associated with higher efficiency (Mukherjee

et al., 2013). Key et al. (2014) is the most expansive study, using data from the Agricultural Resource

Management Survey (ARMS) from 2005 and 2010, and finds a similar, negative relationship between THI

and dairy farm efficiency. Njuki et al. (2020) uses a sample of Wisconsin dairy farms and calculates that

the cost of heat abatement depresses productivity growth in dairy by about 0.3%. In terms of adaptation,

Gisbert-Queral et al. (2021) uses state-level data in the US from 1981 to 2018 and finds that sensitivity

to extreme THI was lower in 2018 than in 1981, supporting the idea that the dairy industry has adapted

to extreme climate shocks over the past few decades.

Our work makes two contributions. First, our work uses observational animal-level data, which can

estimate a far more precise heat-stress impact than previous studies using farm- and state-level data.

Vulnerability to heat stress depends on where a cow is in its production cycle, and the calculated impacts

of heat stress can depend greatly on when observations are taken (Ferreira et al., 2016). We also have

measures of one-day milk yield, measured monthly, and daily data on heat events so we can understand

the precise impact of a heat stress event when it happens. The majority of studies have annual data
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Figure 1: States with representative data in DRMS

on milk production and have to make assumptions about how a year’s exposure to heat will translate

into the sum of production for that year. Having a single-day reading of the cow’s production every

month allows us to bypass these assumptions by estimating the heat stress impacts for different cohorts

of cattle. Our second contribution is that we can examine how calving patterns impact heat stress. A

straightforward way for dairy farms to mitigate heat stress is by changing the timing of their breeding

decisions so that cows do not experience during their most vulnerable periods, specifically the first 120

days of their lactation. Previous studies have focused only on capital investments and have overlooked

changing breeding decisions as a cheap and effective method of adaptation.

3 Methods

3.1 Data

Dairy production data comes from Dairy Records Management Systems (DRMS), a cooperative that

tracks dairy production on herds that are members of a Dairy Herd Improvement Association (DHIA).

We use 56 million dairy cow production records sourced from over 18 thousand dairy farms from the

years 2012 to 2016. Each farm’s cows are sampled monthly, so the data are a panel of daily cow-level

production for each farm that is a DHIA member. Our sample for this analysis covers the states in
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Figure 1. About 44% of dairy farms nationwide are members of DHIAs and in our chosen states DHIA

participation is about 50% (Council on Dairy Cattle Breeding, 2023). This sample also allows for a more

comparable production system across states, as the states in this region have similar sized dairy farms

and similar climates.

Daily weather data comes from gridMET, which measures temperature and humidity at the 1/24th

degree (4-km grid) level (Abatzoglou, 2013). We process these to daily, county-level maximum and

minimum temperature humidity index (THI) measurements. THI has been shown to be the best measure

of the stress a cow experiences, as the combination of heat and humidity limits the cow’s ability to cool

through sweating or other forms of evaporative cooling (Armstrong, 1994; Bohmanova et al., 2007).1

Cattle are even more negatively impacted when THI stays high during the day since they are even less

able to cool off.

To incorporate not just the THI max but the amount of time spent above a cow’s critical THI

threshhold (about 72), we use THI heat load as our measure of heat exposure (St-Pierre et al., 2003; Key

et al., 2014). THI heat load is calculated using the daily min and max of THI and modeling changes in

THI throughout the day with a sine curve (see Figure A1 for a visual depiction). THI heat load measures

the area under the sine curve but above the THI threshhold, which increases when both THI min and

max increase. This measure is often used in the literature to account for days where there is a lower

THI max but still prolonged exposure to heat because of a high THI min. Appendix A contains more

information about the calculation of THI heat load and the relationship between heat load and our daily

THI min and max readings.

We primarily use a measure of heat load that is discretized into quartiles of days with a non-zero heat

load: (0 - 35], (35 - 70], (70 - 140] and 140 or above. Non-zero heat loads below 70 are roughly equivalent

to low-stress days where THI max is between 72 and 80 (Appendix Figure A2).2 Similarly, days with a

heat load between 70 and 140 are usually equivalent to moderate-stress days where THI max is between

80 and 90. Days with heat load above 140 are usually days where THI max is above 90, which is often

considered an extreme-stress day.

Figure 2 shows the distribution of heat load in the summer months (defined as May to September)

of our sample. About 30% of days have zero heat load as THI max never crosses the 72 threshholds.

Between 15 and 20% of days reach low levels of heat stress (non-zero heat laods below 70) and the

remaining 15 and 20% of days reach moderate (70-140) and extreme (above 14) heat loads, respectively.
1We use the formula for THI from Mader et al. (2006) which is T HI = .8T + RH × (T − 14.3) + 46.4 where T is air

temperature in degrees Celsius and RH is relative humidity between 0 and 1.
2Armstrong (1994) and subsequent papers defined categories based on the maximum THI on the day. Using this metric,

they divided days into categories of 72 - 80 THI (low stress), 80 - 90 THI (medium stress) and 90 and above THI (extreme
stress) based on the severity of the heat stress response in each of the categories.
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Figure 2: Heat load distribution in summer months

Figure 3 panel a shows the average heat load during summer across our sample and which quartile

each county falls in. Almost all of New York, Minnesota, and North Dakota have a low heat load, with

averages between 0 and 35. Midwestern states such as Iowa and Ohio experience average heat loads

between 35 and 70. With the exception of the Appalachian mountain region, most southern states and

parts of Iowa, Illinois, and Indiana, have a moderate average heat load during the summer.

Panel b of Figure 3 shows the number of days of extreme (> 140) heat load a county experiences

across the five summer months, on average over the sample period. Most parts of the country experience

at least 30 days of extreme heat load, while states like Missouri and South Carolina experience close to

three months (90 days) of extreme heat load. We map the total extreme heat days in a county by year

in Figure 4. We find that 2012 is the hottest year in our sample and is 2014 the coolest year. There is

significant variation in heat load across our states and across the years in the sample.

3.2 Empirical Strategy

Our goal is to estimate the impact of heat stress days on the daily milk production of individual cattle.

A cow’s production on a given day is explained by her physical environment, management and inputs,

and where the cow is in its production cycle.

The relationship of daily milk production to the days since the cow gave birth (called “days in milk” or

DIM) is modeled in a lactation curve. Figure 5 shows the shape of the lactation curve. Milk production
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(a) Average summer heat load

(b) Number of days above 140 heat load in the summer

Figure 3: Heat load patterns across sample states
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

(e) 2016

Figure 4: Total extreme heat load (> 140) days per county per year, 2012 - 2016
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Figure 5: Lactation curve and the Wood model

reaches its peak in the first 120 days of a cow’s production cycle and is higher at every point for cows

that have given birth multiple times, or cows that are “multiparous” (as opposed to primiparous cows

that have only given birth once). The lactation curve is usually modeled mathematically as a half-gamma

curve: y = adbe−cd. Daily milk production is captured in y, d is days since calving, and a, b, and c are

parameters of the curve. By taking the natural logarithm of both sides, the log of milk production is

linear in d and ln(d): ln(y) = a + bln(d) − cd. This model is referred to as the “Wood model” (Wood,

1967).

To explore the heterogeneous impacts of heat stress, we consider four categories: primiparous cows

before 120 days, primiparous cows after 120 days, multiparous cows before 120 days, and multiparous

cows after 120 days. We expect that multiparous cows before 120 days will be the most vulnerable to

heat stress as these cattle are devoting the most energy into milk production.

Following Hutchins and Hueth (2021), we adapt the Wood model to incorporate heat stress and

estimate how heat stress causes deviations of milk production from the biological lactation curve. To

estimate the average impacts of heat stress across all cattle, we use the following specification:

ln(yihct) = f(dihct, lihct) +
∑
p∈P

K∑
k=0

βpk1{zc,t−k ∈ P} + αh + γt + ϵihct. (1)

Our outcome, ln(yihct) measures the log milk production for cow i in herd h and county c at time t. We

include the main factors from the Wood model interacted with the number of production cycles the cow

has been through: f(dihct, lihct) = lit + bln(dit) − cdit where lit is the number of production cycles the
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cow has experienced (i.e., 1 indicates that the cow is in their first production cycle) and dit is days in

milk. Our treatment is a series of dummy variables, zc,t−k. Each dummy represents a range of values of

THI heat load: (0 - 35), [35 - 70), [70 - 140) and 140 or more. We omit the base category of days with no

heat load. We control for time-invariant herd characteristics (αh) and month, year, and calving month

fixed effects (γt). We cluster standard errors at the herd level, as we anticipate that the effect of heat

stress on production varies at the herd level with management practices.

Next, we consider the heterogeneous impacts of heat stress based on the cow’s lactation cycle:

ln(yihct) =f(dihct, lihct) +
∑
p∈P

K∑
k=0

β0
pk1{zc,t−k ∈ p}

+
∑
p∈P

K∑
k=0

β1
pk1{zc,t−k ∈ p} × Multiparousihct

+
∑
p∈P

K∑
k=0

β2
pk1{zc,t−k ∈ p} × EarlyDIMihct

+
∑
p∈P

K∑
k=0

β3
pk1{zc,t−k ∈ p} × Multiparousihct × EarlyDIMihct

+ αh + γt + ϵihct.

(2)

We interact heat stress events with two indicators: multiparous (i.e., Multiparousihct = 1 if the cow

is not in her first lactation) and whether she is early in her lactation cycle (i.e., EarlyDIMihct = 1 if

she is less than 120 days postpartum at time t.) By interacting heat stress events with these indicator

variables we are testing whether different cohorts of dairy cattle respond differently to heat stress. The

purpose of this specification is to determine the extent to which calving decisions determine the costs

of heat stress. If there are no differences between these cohorts of cattle, then changing the timing of

calving is not an effective method of mitigating heat stress. If significant differences exist, this would

illustrate that producers can use calving decisions to buffer against heat stress.

4 Results

4.1 Heat Stress Impacts

We first estimate the average cost of heat stress across all cows in our sample. These results are similar

to previous results in the literature, as they do not account for heterogeneous effects based on the cow’s

characteristics. Concurring with the literature, we find that milk yield falls due to heat stress and the
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Figure 6: Average, non-linear impact of heat load

effects persist or even increase beyond the day of the heat event. Figure 6 shows the impact of different

levels of heat load on milk production. Low levels of heat load (i.e., positive load under 70) reduce milk

production at most by .5% on average while moderate levels of heat load (i.e., 70 - 140) double the effect

to 1%. Extreme heat loads (i.e., over 140), however, double the effect to a 2% reduction in milk yield.

These measured impacts are somewhat smaller than others found in the literature, which suggests some

adaptation to heat stress has already taken place on these dairy farms.

Figure 7 shows how heat load impacts differ across herd sizes. We expect that larger dairy farms may

have more resources to invest in machinery such as fans and sprinklers and should be the least impacted

by heat stress. Our estimates confirm this. The effects of heat load are decreasing in herd size, and the

largest dairy farms, those above five-hundred cows, experience no damages from low levels of heat load.

All herd sizes experience significant drops in milk yield when heat load exceeds 70, although the smallest

herds still experience a significantly higher loss than the largest herds. For days above 140, the size of

the effects is statistically indistinguishable across herd size: all farm types experience between 2 and 4%

drops in milk yield. This demonstrates that even large farms in our sample are not able to mitigate the

most extreme heat stress.

Table 1 shows the impact of the heat load up to a week after the event. We find significant coefficients

on longer lags; heat events as far out as eight days (Lag = 7) can have a significant effect on current-day

milk production. Coefficients are consistently negative in all specifications, and some lags have significant

impacts on milk yield at all levels of heat stress. Losses range from 0.2% in the week after a day with a
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Figure 7: Impact of heat load across herd size

heat load less than 35, 0.2 - 0.4% losses after a heat load from 35 - 70, 0.3 - 0.8% after a heat load from

70 -140 heat load, and 0.5 - 2.0% losses after a heat load higher than 140. Because lags enter the model

separately, these estimates do not incorporate the non-linear impacts of consecutive stress days. This

may in part explain why we estimate a stronger impact of later lags; these lags would capture production

later in a heat wave.

Next, we examine the impacts of heat stress on different cohorts of dairy cattle. Table 2 reports the

main effect of heat stress and each interaction effect of heat stress with dummy variables for the cow’s

lactation cycle. Figure 8 shows the total effect of heat stress for each cohort of cows at varying levels of

heat load.

The highest-yield cows, those with multiple births (“Multi”) and that are less than 120 days post-birth

(“Early”), experience the highest losses due to heat stress. These cows lose 3% of production even under

low-stress conditions and up to 6% on a day with extreme stress. These multiparous cows see minimal

losses or a very small bump in production (1% on a low stress day) when they are later in their cycle.

In comparison, primiparous cows early in their cycle see a 1% reduction in milk yield regardless of heat

load level. Later in their cycle, primiparous cows see losses that increase with heat load; they lose from

0.4% under low stress conditions to 2% under extreme stress conditions. These results indicate that the

average effects of heat stress are largely driven by the most productive cows in each herd.
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Table 1: Effects of heat load categories on log milk yield

Heat Load Lag = 0
0-35 -0.001∗∗∗

(0.0005)
35-70 -0.005∗∗∗

(0.0007)
70-140 -0.009∗∗∗

(0.0006)
> 140 -0.0199∗∗∗

(0.001)
Observations 56,629,430
Adj. R2 0.409

Heat Load Lag = 0 Lag = 1 Lag = 2
0-35 −0.001 −0.0001 −0.003∗∗∗

(0.001) (0.001) (0.001)
35-70 −0.003∗∗∗ −0.001 −0.005∗∗∗

(0.001) (0.001) (0.001)
70-140 −0.004∗∗∗ −0.001 −0.010∗∗∗

(0.001) (0.001) (0.001)
> 140 −0.009∗∗∗ −0.003∗ −0.023∗∗∗

(0.001) (0.002) (0.001)
Observations 56,629,430
Adj. R2 0.409

Heat Load Lag = 0 Lag = 1 Lag = 2 Lag = 3 Lag = 4 Lag = 5 Lag = 6 Lag = 7
0-35 −0.001 −0.001 −0.002∗∗ −0.001 −0.002∗∗∗ −0.001 −0.0004 −0.0003

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
35-70 −0.002∗∗ −0.002∗ −0.002∗∗ −0.001 −0.003∗∗∗ −0.002∗∗ −0.002∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
70-140 −0.001 −0.002 −0.003∗∗∗ −0.001 −0.007∗∗∗ −0.005∗∗∗ −0.003∗∗∗ −0.008∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
> 140 −0.002 −0.002 −0.005∗∗∗ −0.005∗∗∗ −0.015∗∗∗ −0.013∗∗∗ −0.014∗∗∗ −0.020∗∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)
Observations 56,629,430
Adj. R2 0.409

Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Covariates: days in milk, log(days in milk), multiparous, somatic cell count
Fixed effects: herd, month, calving month, year
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Table 2: Effects of THI heat load, average and by lactation phase

Ln(Milk Yield)
Average

0-35 −0.002∗∗∗

(0.001)
35-70 −0.005∗∗∗

(0.001)
70-140 −0.009∗∗∗

(0.001)
> 140 −0.020∗∗∗

(0.001)

Observations 56,629,430
Adj. R2 0.409

Heat stress Heat stress x Heat stress x Heat stress x
Early DIM Multiparous Multiparous ×

Early DIM
0-35 −0.004∗∗∗ −0.011∗∗∗ 0.014∗∗∗ −0.030∗∗∗

(0.001) (0.001) (0.001) (0.001)
35-70 −0.007∗∗∗ −0.008∗∗∗ 0.013∗∗∗ −0.037∗∗∗

(0.001) (0.001) (0.001) (0.001)
70-140 −0.012∗∗∗ −0.004∗∗∗ 0.015∗∗∗ −0.045∗∗∗

(0.001) (0.001) (0.001) (0.001)
> 140 −0.020∗∗∗ 0.002 0.011∗∗∗ −0.056∗∗∗

(0.001) (0.002) (0.001) (0.002)

Observations 56,629,430
Adj. R2 0.409
Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Covariates: days in milk, log(days in milk), multiparous, somatic cell count
Fixed effects: herd, month, calving month, year
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Figure 8: Effect of day-of heat load on milk yield
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(a) 0-35 (b) 35-70

(c) 70-140 (d) > 140

Figure 9: State-level impacts of heat load
Note: states with coefficients not statistically different than zero at the 10% level are in gray.

4.2 Heat Stress and Calving Patterns Across States

Our results are not purely biological effects. Instead, they are the impacts of heat stress mitigated by

management and capital investment made by farms to lessen heat stress. Since not all farms are equally

exposed to heat stress, we would expect the impacts of heat stress to be different across the states in

our sample. We finish our analysis by examining how heterogeneous the impacts of heat stress are across

states and whether patterns in calving differ across states. If states with heat stress are shifting more

births to the fall instead of the spring, this suggests that calving patterns may be changing in reaction

to heat stress.

In Figure 9, we map the effect of each heat load category across states. Only a few states, North

Dakota, Illinois, Missouri, Michigan, and Pennsylvania, experience significant losses in milk yield when

heat load is between 0 and 35. As in our sample-wide estimates, we see increasing losses at higher levels

of heat load. More states experience significant losses at 35 - 70 and 70 -140 heat load, and states’ losses

increase in magnitude as heat load increases.

States show different patterns of damage, which demonstrates the importance of management and
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adaptation. While nearly all states show an increase in losses as heat load increases, the increase is gradual

and maximum losses are no more than 2% for some states (e.g., Michigan, Minnesota, and Pennsylvania).

In these states, we expect that management practices are effective at mitigating heat stress at all levels

of heat load. Notably, these are also relatively mild states. In contrast, some states do not experience

any losses under low-stress conditions but high losses (up to 5%) under extreme stress conditions (e.g.,

Arkansas, North Carolina, South Carolina, and West Virginia). Farms in these states may have mitigated

low-level heat load but are extremely vulnerable to high levels of heat load, which are common in these

states. Notably, we do not detect significant losses at any heat load in Nebraska or Indiana; this warrants

further study.

As we learned from our heterogeneous specification, the damages to a farm depend on where a cow

is in their production cycle. This means that how resilient a state is to heat stress partly depends on

when cows give birth in each state. How do calving patterns differ across states? In Figures 10 and 11,

we graph the distribution of calving months (i.e., how many cows give birth in each month) and average

number of extreme stress days per month by state.3 We compare the percent of the herd that calves in

a month to the percent that we would observe if calving were distributed randomly throughout the year:

8.3% per month.4 The 8.3% per month rate is represented by the dashed, horizontal line.

We observe that disproportionately more cows give birth in fall months (i.e., after September) in

states with more extreme summer temperatures. Arkansas, Tennessee, and South Carolina, experience

an average of 20 or more extreme stress days in July; they also calves more than 12% of the annual total

in September. In these warmest states, the fall births replace births in the summer months (i.e., May

to August), all of which have birth rates of less than 7.5% of the annual total. In slightly milder states,

Illinois, Indiana, Iowa, Kentucky, and Missouri all experience an average of 7.5 or more extreme stress

days in July. These states still exhibit clear fall calving patterns; they calve at least 10% or more of the

annual total in September and nearly that in October and November. These fall births replace births in

March, April and May, all three of which fall below an 8.3% calving rate. We also observe more subtle

versions of these patterns in Michigan, Minnesota, Ohio, all of which experience an average of 5 or fewer

extreme heat days in August. These patterns suggest that some farmers are using the timing of calving

to minimize losses from heat stress.

These patterns may in part also be driven by lower conception rates during heat events. Given a

cow’s ten month gestation, this could drive lower calving rates in the two months before hot months.

For example, in South Carolina and Arkansas, where heat stress continues through the early fall, we

see calving remains low through the summer months. In states where temperatures are high in the
3We estimate this average over the set of counties that have dairy cows.
4We normalize the number of births per month to a 30-day month.
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summer but drop quickly in the fall months, we see the lowest rates of calving in April and May, with

some rebound in the summer months. Future work should distinguish between attempted and successful

insemination by heat stress at the time of insemination.

There are notable exceptions to these patterns. North Carolina experiences weather very similar to

Kentucky, Tennessee, and Missouri, but it calves only 10% of the herd in September compared to 12.5%

in these states. Calving in Virginia peaks in July and August, despite these being the hottest months

of the year. In North Dakota, there is no evidence of fall calving; summer is the most common calving

period in the state.

Seasonal calving patterns may also explain differences in average heat stress effect across states. For

example, it may explain the high vulnerability of the herds in North Dakota to heat stress, as they

have relatively more calves early in their production cycle in the summer. As such, the average losses

across their herds are higher relative to a state that has fall calving patterns. Similarly, North Carolina

experiences higher losses under extreme conditions than comparable states with more seasonal calving.

However, these patterns do not explain the entire variation in heat stress effects, nor does the average

number of heat stress events predict county-level calving patterns. Further research should investigate

the conditions under which a farm adopts seasonal calving as well as the other management practices

that farmers adopt to mitigate heat stress.
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(a) Iowa (b) Indiana (c) Illinois

(d) Minnesota (e) North Dakota (f) South Dakota

Figure 10: Calving Patterns and Average Heat Events in Select States
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(a) Michigan (b) Ohio (c) Kentucky

(d) New York (e) Pennsylvania (f) West Virginia

Figure 11: Calving Patterns and Average Heat Events in Select States, Continued
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(a) Virginia (b) North Carolina (c) South Carolina

(d) Arkansas (e) Tennessee (f) Missouri

Figure 12: Calving Patterns and Average Heat Events in Select States, Continued
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4.3 Cost Calculations

We use the total weekly loss following a stress day using the average loss estimates from table 1 to

calculate the total cost of heat stress for a hundred-cow herd in our sample. The average county in our

sample experienced 390 low-stress, 206 medium-stress, and 125 extreme-stress days over the five-year

period (78, 41, and 25 days per year, respectively). For a hundred-cow herd with an average yield of 80

pounds of energy-adjusted milk per cow, this is equivalent to 28,916 pounds of milk lost due to low-stress

days, 42,953 pounds lost due to medium-stress days, and 72,073 pounds lost due to extreme stress. In

total, a hundred-cow herd under the average weather conditions in our sample lost 143,942 pounds of

energy-adjusted milk to heat stress over five years. At $10 profit per pound of milk, this is equivalent to

$1.4 million dollars in lost profit over five years, or $287,888 per year.5

Next, we estimate a back of the envelope calculation of the total yield loss in our sample over the

five-year period. In each county and each month, we estimate the total milking herd in the county and

multiply this by the sample average winter yield of 81.8 pounds of milk per cow per day. This calculates

a rough total county-level counterfactual yield. We multiply this yield by the total number of heat stress

days in the county and the total yield lost due to that category of heat stress. We then multiply this loss,

in pounds of milk, by the profit margin of milk in that month. Across all of the herds in our sample, we

estimate a total loss of 975 million pounds of energy-adjusted milk over the period. This is composed of

263 million lost due to low-stress days, 336 million lost due to medium-stress days, and 376 million lost

due to extreme-stress days. At actual profit margins per pound of milk, this is equivalent to $60 million

in lost profit over 5 years. While losses varied greatly year-to-year, this comes out to $12 million in lost

profit per year, on average.

Under current climate conditions, most of the losses are due to low- and medium-stress days. This is

due to their combination of relatively high yield loss per cow and the frequency of these events. However,

it is important to note that the yield loss per cow due to an extreme-stress day is nearly triple that of a

medium-stress day. Under climate scenarios with more frequent extreme stress days, the costs could be

far higher.

How much of these losses are due to vulnerable cattle? We calculate the total seven-day losses following

one day of low, medium, or extreme stress for a multiparous cow early and late in their lactation cycle.

The week following a day with positive heat load less than 35, multiparous cows lose 3.7% of a day’s

yield early in their cycle and have no losses late in their cycle. Similarly, multiparous cows lose 4.1%

the week following a day with heat load from 35 - 70 that falls early in their cycle but experience no

losses late in their cycle. Following a medium-stress day (70 - 140 heat load), they lose 5.6% early in
5In the period 2012 to 2016, the income over feed cost, a measure of the profit margin for dairy farms, was about $8.5

per pound of milk.
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their cycle compared to 2.1% late in their cycle. Following an extreme-stress day, they lose 11.1% early

in their cycle, compared to 7.6% late in their cycle. We use these numbers to estimate the total losses

of multiparous cows early in their cycle in May through August and find these losses account for $31.4

million of the $60 million lost profit (52% of losses) in our sample.

Finally, how much loss could be averted if producers changed their calving dates? We estimate a

back-of-the-envelope estimate of the avoided losses if all of the multiparous cows in our sample had been

more than 120 day post-birth during the summer months (May - August). This is equivalent to a regional

herd with no calving from February to August. We find this adjustment would have mitigated $22.69

million in lost profit.

This estimate does not include potential general-equilibrium effects of all herds shifting to a fall calving

cycle. However, since the herds in our sample primarily supply milk for processed dairy products with a

longer shelf life, we expect the general equilibrium effects to be minimal. Farms would additionally pay

a one-time fixed cost of $2.50 per cow per day in lost production for the days that a cow was left dry

as the farmer adjusted her calving schedule. It also does not include potential cost savings from failed

insemination attempts, which are more likely under warmer conditions. If higher rates of insemination

failure explain the current seasonality in calving, then avoiding attempts until temperatures are cooler

could increase a herd’s success rate provide an additional form of cost savings.

5 Conclusion

Our analysis calculates the impacts of heat stress on the US dairy sector using animal-level data from

the Midwest in the period 2012-2016. After conducting a back of the envelope calculation, we calculate

that $6.79 billion in dairy industry profits were lost in our five year period because of heat stress. Most

of the losses in our sample are being driven by low- and medium- heat stress days with a heat load below

140. However, losses due to a single extreme heat event are at least double those of a single medium

heat event. A scenario with more extreme stress days could see rapidly rising losses due to to heat stress.

Similarly, we find that multi-day heat events, defined as three consecutive days of at least low stress,

yield losses equivalent to a single day of extreme heat stress. Thus, our results demonstrate the potential

for greater losses in a scenario with heat waves rather than single-day heat events. Finally, losses are

greatest for cattle that are early in their production cycle and have given birth multiple times, who are

also the major producers in a herd.

Our unique data allows us to understand how heat stress impacts different cohorts of dairy cattle

across production cycles. Of the $6.79 billion in total losses, a little more than half of this loss was from
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cattle who were exposed to heat stress during their most vulnerable and most productive months. We

estimate that about one-third of this loss would be averted by dairy farmers simply changing their calving

dates so that these vulnerable dairy cattle are less exposed to heat.

In terms of evidence of adaptation, we see very little impacts of the lowest-stress days with a posi-

tive heat load under 35, despite the fact that cattle should see decreased milk production under these

conditions. We do not find as large of impacts as previous studies, which suggests that some mitigation

has likely taken place. With respect to calving dates, we see evidence that states with a large number

of stress days have shifted calving dates to the fall instead of the spring. Some states with more spring

calvings are also seeing larger heat stress impacts.

Our work demonstrates the vulnerability of livestock production, and dairy production in particular,

to climate change. Despite being among the most technologically advanced in the world, US dairy

producers experience significant losses from heat events. This raises concerns for low-income contexts

where livestock production is a main income source and dairy products are a vital source of protein and

calories. Yet, the potential for changes in calving dates to mitigate heat stress suggest there are still

low-cost ways for livestock producers to buffer themselves from the harmful impacts of increasing heat.
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Appendix A THI heat load calculation

Our measure of heat exposure is THI heat load. Heat load measures the amount of time that cattle spend

above their critical THI threshhold which we consider to be 72 (St-Pierre et al., 2003). Figure A1 is from

Key et al. (2014) and shows that heat load is equivalent to the area under a sine curve fit using the THI

min and max. Our heat load measure was calculated using the formula in the Appendix of St-Pierre

et al. (2003) the THI min and max using this python script:
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import numpy as np

P = 24

PI = np.pi

def heat_load(THI_min,THI_max,thresh):

if thresh>=THI_max:

res = 0

else:

THImean = (THI_max + THI_min)/2

if thresh<THI_min:

res = P*(THImean - thresh)

else:

amp = (THI_max-THI_min)/2

if thresh>=THImean:

x1 = np.arcsin((thresh-THImean)/amp)

x2 = PI - x1

res = (np.cos(x1)-np.cos(x2))*amp*P/2/PI - (x2-x1)*P/2/PI*(thresh-THImean)

else:

x1 = PI

x2 = PI + np.arcsin((THImean-thresh)/amp)

X = (np.cos(x2)-np.cos(x1))*amp*P/PI

res = amp*P/PI + (THImean-thresh)*P/2 + (THImean-thresh)*((x2-PI)*P/PI) - X

return res

Heat load is increasing in both THI max and THI min since they both increase the amount of exposure

to heat. Figure A2 shows the relationship between THI max, THI min, and heat load. The common

categories of low, moderate, and extreme stress days can roughly translate to different tiers of heat load.

Low stress days with THI between 72 and 80 roughly translate to days where THI heat load is more than

0 and less than 70. Medium stress days with THI between 80 and 90 roughly translate to days where

THI heat load is between 70 and 140. Finally, extreme stress days with THI above 90 usually have a

heat load of at least 140.

Appendix B State-level coefficients
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Figure A1: THI Load Model

Source: Key et. al. (2014)

Figure A2: THI max, min, and load
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Table B1: State-level coefficients

Heat Load
0-35 35-70 70-140 140-210 > 210

State Name
Vulnerable

South Carolina -0.028 -0.040 -0.042 -0.051 -0.104
Arkansas -0.016 -0.015 -0.044 -0.050 -0.043
North Dakota -0.017 -0.023 -0.020 -0.047 -0.013
Illinois -0.006 -0.012 -0.020 -0.027 -0.034
Missouri -0.006 -0.011 -0.019 -0.021 -0.034

Low-Level Resilient
North Carolina 0.001 -0.002 -0.008 -0.030 -0.035
Tennessee -0.002 -0.018 -0.007 -0.022 -0.029
Iowa -0.002 -0.005 -0.006 -0.020 -0.031
Kentucky -0.001 -0.011 -0.009 -0.020 -0.033
Virginia 0.001 -0.002 -0.008 -0.018 -0.037
Michigan -0.004 -0.006 -0.008 -0.012 -0.025
Minnesota -0.000 -0.001 -0.007 -0.014 -0.021
South Dakota -0.004 -0.009 -0.010 -0.004 -0.029
West Virginia -0.002 -0.008 0.005 -0.025 -0.003
Nebraska -0.001 -0.003 -0.007 -0.011 -0.011

Resilient
New York -0.002 -0.002 -0.005 -0.011 -0.004
Pennsylvania -0.002 -0.008 -0.010 -0.009 -0.018
Indiana -0.001 -0.006 -0.005 -0.008 -0.005
Ohio -0.001 -0.001 -0.007 -0.010 0.001
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Table B2: State-Level Heterogeneous Coefficients pt. 1

North North Ohio Pennsylvania South South Tennessee Virginia West
Heat Load Carolina Dakota Carolina Dakota Virginia

Primi < 120 DIM 0-35 -0.004 -0.023 -0.018 -0.009 -0.057 -0.046 -0.007 -0.005 0.001
35-70 0.012 -0.044 -0.018 -0.011 -0.083 -0.042 -0.003 -0.003 -0.006
70-140 0.005 -0.011 -0.022 -0.013 -0.064 -0.045 -0.003 -0.004 0.023
140-210 0.005 -0.016 -0.016 -0.009 -0.051 -0.039 -0.005 -0.010 -0.004
> 210 -0.012 -0.004 -0.011 -0.013 -0.084 -0.054 -0.003 -0.024 -0.020

> 120 DIM 0-35 -0.002 -0.021 -0.004 -0.001 -0.000 -0.008 -0.001 0.000 -0.005
35-70 -0.008 -0.024 -0.003 -0.007 -0.026 -0.018 -0.016 -0.004 -0.004
70-140 0.000 -0.031 -0.010 -0.008 -0.037 -0.009 -0.010 -0.011 0.018
140-210 -0.015 -0.063 -0.013 -0.008 -0.045 -0.018 -0.021 -0.018 -0.026
> 210 -0.011 0.004 0.010 -0.016 -0.100 -0.029 -0.024 -0.043 0.042

Multi < 120 DIM 0-35 -0.012 -0.039 -0.035 -0.029 -0.068 -0.041 0.013 -0.013 -0.013
35-70 -0.016 -0.056 -0.041 -0.040 -0.061 -0.046 -0.009 -0.022 -0.040
70-140 -0.043 -0.013 -0.048 -0.047 -0.060 -0.051 -0.000 -0.028 -0.036
140-210 -0.067 -0.090 -0.057 -0.048 -0.082 -0.052 -0.018 -0.053 -0.058
> 210 -0.081 -0.063 -0.075 -0.064 -0.133 -0.086 -0.043 -0.067 -0.072

> 120 DIM 0-35 0.012 -0.003 0.011 0.009 -0.021 -0.000 0.002 0.011 0.004
35-70 0.004 0.006 0.013 0.005 -0.031 -0.007 -0.018 0.009 0.006
70-140 -0.002 -0.029 0.009 0.005 -0.035 -0.012 0.000 0.002 0.011
140-210 -0.034 -0.035 0.004 0.005 -0.047 0.011 -0.019 -0.003 -0.018
> 210 -0.037 -0.004 0.026 -0.002 -0.105 -0.024 -0.024 -0.024 0.004
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Table B3: State-Level Heterogeneous Coefficients pt. 2

Arkansas Illinois Indiana Iowa Kentucky Michigan Minnesota Missouri Nebraska New York
Heat Load

Primi < 120 DIM 0-35 0.003 -0.016 -0.014 -0.011 0.007 -0.017 -0.022 -0.010 -0.008 -0.017
35-70 -0.033 -0.037 -0.009 -0.020 0.012 -0.008 -0.021 -0.013 -0.013 -0.017
70-140 -0.005 -0.024 -0.017 -0.018 0.010 -0.013 -0.020 -0.006 -0.012 -0.021
140-210 -0.025 -0.031 -0.009 -0.025 -0.002 -0.010 -0.022 -0.011 -0.018 -0.021
> 210 -0.016 -0.024 0.005 -0.034 -0.018 -0.019 -0.025 -0.017 0.000 -0.024

> 120 DIM 0-35 -0.025 -0.003 -0.007 -0.003 0.006 -0.010 0.001 -0.007 -0.000 -0.006
35-70 0.007 -0.016 -0.010 -0.003 -0.002 -0.006 0.001 -0.007 -0.018 -0.006
70-140 -0.064 -0.022 -0.006 -0.006 -0.007 -0.017 -0.006 -0.017 -0.007 -0.009
140-210 -0.028 -0.026 -0.018 -0.021 -0.014 -0.021 -0.009 -0.016 -0.019 -0.012
> 210 -0.031 -0.036 -0.009 -0.034 -0.036 -0.028 -0.016 -0.030 -0.016 0.000

Multi < 120 DIM 0-35 -0.011 -0.038 -0.019 -0.028 0.018 -0.038 -0.038 -0.003 -0.023 -0.040
35-70 -0.016 -0.042 -0.023 -0.034 -0.010 -0.043 -0.040 -0.021 -0.024 -0.042
70-140 -0.029 -0.055 -0.035 -0.039 -0.005 -0.049 -0.051 -0.032 -0.038 -0.045
140-210 -0.070 -0.072 -0.035 -0.057 -0.028 -0.060 -0.062 -0.036 -0.037 -0.053
> 210 0.005 -0.072 -0.039 -0.079 -0.029 -0.067 -0.070 -0.053 -0.041 -0.011

> 120 DIM 0-35 -0.001 0.006 0.018 0.007 0.002 0.012 0.012 0.004 0.010 0.010
35-70 -0.005 0.008 0.005 0.004 -0.006 0.002 0.011 0.000 0.020 0.010
70-140 -0.034 -0.007 0.014 0.006 0.002 0.009 0.006 -0.009 0.009 0.007
140-210 -0.045 -0.010 0.012 -0.008 -0.009 0.009 -0.002 -0.012 0.009 -0.002
> 210 -0.054 -0.024 0.012 -0.011 -0.019 -0.016 -0.009 -0.025 0.003 -0.013
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